Dual functions of Streptococcus salivarius urease.
نویسندگان
چکیده
A urease-deficient derivative of Streptococcus salivarius 57.I was constructed by allelic exchange at the ureC locus. The wild-type strain was protected against acid killing through hydrolysis of physiologically relevant concentrations of urea, whereas the mutant was not. Also, S. salivarius could use urea as a source of nitrogen for growth exclusively through a urease-dependent pathway.
منابع مشابه
Complete genome sequence of the ureolytic Streptococcus salivarius strain 57.I.
Streptococcus salivarius 57.I is one of the most abundant and highly ureolytic bacteria in the human mouth. It can utilize urea as the sole nitrogen source via the activity of urease. Complete genome sequencing of S. salivarius 57.I revealed a chromosome and a phage which are absent in strain SK126.
متن کاملStreptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus.
The hydrolysis of urea by urease enzyme of oral bacteria is believed to have a major impact on oral microbial ecology and to be intimately involved in oral health and diseases. To begin to understand the biochemistry and genetics of oral ureolysis, a study of the urease of Streptococcus salivarius, a highly ureolytic organism which is present in large numbers on the soft tissues of the oral cav...
متن کاملRole of VicRKX and GlnR in pH-Dependent Regulation of the Streptococcus salivarius 57.I Urease Operon
Ureolysis by Streptococcus salivarius is critical for pH homeostasis of dental plaque and prevention of dental caries. The expression of S. salivarius urease is induced by acidic pH and carbohydrate excess. The differential expression is mainly controlled at the transcriptional level from the promoter 5' to ureI (p ureI ). Our previous study demonstrates that CodY represses p ureI by binding to...
متن کاملCharacterization of recombinant, ureolytic Streptococcus mutans demonstrates an inverse relationship between dental plaque ureolytic capacity and cariogenicity.
Dental caries results from prolonged plaque acidification that leads to the establishment of a cariogenic microflora and demineralization of the tooth. Urease enzymes of oral bacteria hydrolyze urea to ammonia, which can neutralize plaque acids. To begin to examine the relationship between plaque ureolytic activity and the incidence of dental caries, recombinant, ureolytic strains of Streptococ...
متن کاملTranscriptional regulation of the Streptococcus salivarius 57.I urease operon.
The Streptococcus salivarius 57.I ure cluster was organized as an operon, beginning with ureI, followed by ureABC (structural genes) and ureEFGD (accessory genes). Northern analyses revealed transcripts encompassing structural genes and transcripts containing the entire operon. A sigma70-like promoter could be mapped 5' to ureI (PureI) by primer extension analysis. The intensity of the signal i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 182 16 شماره
صفحات -
تاریخ انتشار 2000